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Abstract

The kinetics of freezing of a supercooled water film flowing on an icing surface is considered here for the case of laminar hea
through the water film. The linear growth rate of crystallization (LRC) in a supercooled, laminar water film, flowing over an ac
ice surface, is found to be characterized by unique behaviours at different length scales. The icing surface is envisaged as a s
horizontal flat plate with vertically impinging supercooled water droplets. The water film begins to develop at the edge of the p
thickens while it collects impinging water as the horizontal wind stress drives it downstream. At very short distances from the Cou
origin, where convection prevails over conduction through the water film, the LRC reacts in a stable fashion to instantaneous chan
external thermodynamic parameters. The LRC accelerates or decelerates, responding to variations in the water film thickness. At in
distances from the flow origin, the LRC is independent of sudden perturbations in the water film thickness, and is determined on
mean external parameters that characterize the heat transfer and flow dynamics at the water film surface. At a still greater distan
flow origin, the LRC is unstable in a shear-driven, supercooled water film, flowing over an accreting ice surface. The instability give
either complete disappearance of the water film or a total change of the momentum and heat transfer regime.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The traditional conceptual model of the icing process
a structure embedded within a supercooled aerosol st
consists of two parts:

(i) the aerodynamic theory of the flow of the aero
particles around the structure—[1,2], and,

(ii) a thermodynamic heat balance calculation at its surf
which determines the accretion rate—[3–5].

Without denying the importance of the former, the pres
work deals only with the thermodynamic aspects of the ic
process. In it, we will try to elucidate the processes at wor
a wind-sheared supercooled liquid film flowing on an ic
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E-mail address:farzaneh@uqac.uquebec.ca (M. Farzaneh).
URL address:http://icevolt.uqac.uquebec.ca/cigele.
1290-0729/02/$ – see front matter 2002 Éditions scientifiques et médicales
doi:10.1016/S1290-0729(02)00049-2
surface, and to investigate how these processes might go
the rate of ice formation.

1.1. Wet and dry modes of ice growth

The current approach to considering the icing heat
ance is a macroscopic one, developed originally for the
pose of aircraft icing modelling [3]. In this approach, for t
purpose of calculating the temperature of an icing surf
the temperature of fusion,Tm = 273.15 K, is taken as the ref
erence point, distinguishing the solid and liquid states of
ter. An examination of the heat balance relative to this re
ence point is accomplished by the introduction of a freez
fraction coefficient, defined as the fraction of the imping
aerosol mass that turns into ice. When the freezing frac
is less than unity, the remaining unfrozen liquid is assum
to form a water film on the icing surface, which moves u
der the influence of aerodynamic and gravitational forc
This liquid film can play a significant role in the heat a
mass transfer processes. The icing regime with such a
Elsevier SAS. All rights reserved.
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Nomenclature

a empirical constant (see (9)) . . . . . . . m·s−1·K−b
b empirical constant in the formula for linear rate

of crystallization (see (9))
A dendrite curvature ratio (see (36))
cf skin friction coefficient
cw specific heat capacity of water . . . . J·kg−1·K−1

C constant,= 0.6× 10−6 . . . . . . . . . . . . . . . . . m·K
Ce correction to the rate of displacement of the

air/water surface due to evaporation . . . . m·s−1

E mean transfer efficiency of the dispersed phase
from the aerosol onto the surface of the water
film

f dimensionless function in the similarity
transformation

fi interfacial friction factor
F interfacial shear stress applied to the surface of

the water film . . . . . . . . . . . . . . . . . . . . . . . N·m−2

g acceleration due to gravity . . . . . . . . . . . . . m·s−2

Ga ice growth rate along thea-axis . . . . . . . . m·s−1

Gc ice growth rate along thec-axis . . . . . . . . m·s−1

Gm maximum ice growth rate . . . . . . . . . . . . . m·s−1

h water film thickness . . . . . . . . . . . . . . . . . . . . . . m
heq equilibrium water film thickness, defined by

equating dy1/dτ and dy2/dτ (see (41)) . . . . . m
hgν water film thickness characterizing the

interaction between gravity and viscosity,

= ( ν2
wρw

g(ρw−ρa) )
1/3 ∼= ( ν2

w

g
)1/3 . . . . . . . . . . . . . . . . m

H dimensional coefficient of heat transfer to water
film . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2·K−1

H+ = Nu∗ dimensionless coefficient of heat transfer to
water film

ks height of the roughness elements . . . . . . . . . . . m
l plate length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Li specific latent heat of freezing of water . J·kg−1

Pr andPrt molecular and turbulent Prandtl numbers
for water, respectively

Qout,s net heat flux at the surface of the water
film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

Qwl heat flux at the ice/water interface . . . . . W·m−2

RC andR2 principal and secondary radii of curvature of
the tip of an ice dendrite, respectively, . . . . . . m

Re Reynolds number
T (x, y) temperature field in the supercooled water

film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tm temperature of fusion of water,= 273.15. . . . K
T ′v′ turbulent heat flux, time averaged product ofT ′

andv′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·K·s−1

u(y) andv(y) tangential and normal components of
water film velocity . . . . . . . . . . . . . . . . . . . . m·s−1

u′v′ turbulent “shear stress”, time averaged product
of u′ andv′ . . . . . . . . . . . . . . . . . . . . . . . . . m2·s−2

uw−a friction velocity at the air/water interface m·s−1

w liquid water content (LWC) of the air-aerosol
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

x andy tangential and normal co-ordinates in the water
film, respectively . . . . . . . . . . . . . . . . . . . . . . . . . m

dy1
dτ rate of macroscopic displacement of the

ice/water interface . . . . . . . . . . . . . . . . . . . . m·s−1

dy2
dτ rate of displacement of the air/water

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

Greek symbols

α = 1.3282 constant arising from the similarity
transformation (see (26))

δT andδD laminar thermal and dynamic boundary layer
thicknesses, respectively . . . . . . . . . . . . . . . . . . m

(1 = Tm − T1 supercooling at the ice/water
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

(2 = Tm − T2 supercooling at the air/water
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

(bk = 1
h

∫ h
0 (Tm − T )dy = f ((1,(2, h)

supercooling of the bulk water . . . . . . . . . . . . . K
ϕ inclination of the dendrites with respect to the

basal plane
εM andεH eddy diffusivity of water for momentum and

heat transfer . . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

ζ dimensionless variable (see (29))
η dimensionless coordinate arising from the

similarity transformation (see (20))
Θ dimensionless temperature,= T1−T

T1−T2

λw thermal conductivity of water . . . . W·m−1·K−1

Λ similarity variable,= νw(ρwxF ·h )
1/2 . . . . . . . . . . m

νa kinematic viscosity of air . . . . . . . . . . . . . m2·s−1

νw kinematic viscosity of water . . . . . . . . . . m2·s−1

ρa air density . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ρi density of the growing ice layer at the interface
y1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ρw water density . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

τ time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
χw thermal diffusivity of water . . . . . . . . . . . m2·s−1

ψ stream function for components of velocity in
the water film . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

Subscripts

1 ice/water planar interface
2 ands air/water interface
bk bulk
a air
crit critical
F film
FL flow
eq equilibrium
i ice
l laminar
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uid film is typically referred to as “wet”. The “dry” regime
when the freezing fraction equals unity, is characterized
the complete freezing of the impinging water without t
formation of a liquid film.1 We ignore, for now, the possibi
ity of spongy ice formation.

A series of experiments with artificial hailstones gro
under laboratory conditions simulating natural conditio
[9] and [10], has confirmed that the temperature of the
ter film on an icing surface in the wet mode is always be
0 ◦C. This observation suggests the need to propose a
ternative to the traditional macroscopic approach, for dis
guishing between icing growth regimes with and withou
water film on an icing surface. The terminologies “wet” a
“dry” applied for this distinction in various models of ic
accretion since the time of Schumann’s theoretical work
are becoming obsolete and misleading due to advanc
parallel fields.

Finding an alternative to the contemporary distinction
tween the two icing regimes mentioned is the first and m
important aim of this work. This will be accomplished b
a consideration of the kinetics of ice crystal growth, allo
ing for a finite supercooling,(1, at the ice/water interface
relative toTm. Recent interferometric measurements of
temperature field around ice crystals growing in superco
water [11] have confirmed this supercooling as a driv
force for ice dendrite growth. Experimental relationships
tween the ice growth rate in thea- or c-axis directions and
the appropriate supercooling at the ice/water interface
abundant in the literature. The type of function depends
the mechanism chosen to explain the displacement o
solid/liquid interface, whether 2-D embryo nucleation, ed
or screw dislocation growth, or linear growth [12]. Choos
a relationship characterizing linear growth, we will demo
strate that theapplication of this relationship alone wil
specify the water film supercooling. The solution will be
conditioned by assuming the absence of appreciable
conduction into the already-formed ice deposit on the s
strate, and by assuming that the ice/water interface is
sentially isothermal. In this way, we differ with some a
thors, who consider a relationship between ice growth
and supercooling in water at some finite, but undeterm
distance from the interface, referred to as “bath superc

1 It should be noted that a thinquasi-liquid skin of supercooled wate
(with a thickness of the order of a few tens of monomolecular lay
may exist on the surface of ice crystals even under conditions of st
supercooling (down to∼ −15◦C) [6]; more recent treatment of the proble
can be found in [7] and [8]. The physical nature of this water skin, howe
is quite different from what we are considering here.
-

t

ing” or “bulk water supercooling”. In order to apply the la
ter term to the case of a thin supercooled water film flow
on an ice surface, three variables should first be defined

(i) the temperature profile in the water film,
(ii) the thickness of the film, and,
(iii) either the temperature of the free water surface or

temperature of the ice/water interface.

The temperature of the bulk water may then be defined a
integral of the temperature taken over the entire water
thickness.

1.2. Macroscopic considerations: Interaction of the melt
flow and solidification processes

The growth or melting of ice under a water film, typic
of icing under high liquid flux conditions, depends n
only on the heat exchange with the surroundings, but
on the dynamical conditions in the water film. Extern
and internal factors, such as aerodynamic and gravitati
forces, surface tension, etc., lead to water film motion
therefore need to be considered. In this paper, the prob
of the interaction of melt flow and solidification process
which has now been investigated for over 40 years, wil
reformulated as aproblem of laminar and turbulent hea
transfer through a thin flowing water film from the ice/wa
interface to the environment. This is the second importan
objective of the present paper. We will first consider brie
however, some solutions to this problem in the close
related fields of ice physics and metallurgy.

Weertman [13], investigating different mechanisms
water transfer at the base of a glacier, showed that
radius of Röthlisberger channels depends on the heat tra
regime in the water, even more than on other fac
investigated. For example, the calculated change in cha
radius, when the heat transfer changes from lamina
turbulent, is more than one order of magnitude. Svens
and Omstedt [14] have developed a mathematical u
ocean model, under drifting, melting ice, designed to incl
the effects of turbulence in the water and discrete rough
elements. The turbulence was modelled with a combina
of a low-Reynolds number model close to the ice surf
and a high-Reynolds number model at some distance
it. Under the conditions they considered, the turbulent
of salinity matches the diffusive flux at a distance of 350
from the ice surface. For the heat flux, the matching dista
was about 1200 µm. This suggests that both turbulent
diffusive fluxes may play an important role, even in very th
liquid films.
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In metallurgy, the influence of the flow of the melt on t
morphology of a solid has been under scrutiny for sev
decades. For example, Cole [15] investigated the effec
thermal convective flow on the casting structure by mea
ing local temperature gradients and temperature fluctua
in the melt. Paradoxically, the highest temperature grad
observed in the laminar sub-layer near the solid/liquid in
face was associated with the smallest amplitude of tem
ature variation. Conversely, the largest amplitude was
served in the upper part of the turbulent thermal bound
layer, where the observed gradient was minimal. Vand
bulcke and Vuillard [16] investigated the influence of natu
convection in the melt of an Al–Si eutectic alloy during u
directional solidification from top to bottom. Measuring t
temperature gradient in the fluid and its variation in tim
they considered four types of convection: laminar, two
termediate types and turbulent convection. Correspondin
they were able to identify four different morphological stru
tures in the growing alloys.

In metals, the temperature diffusion boundary laye
thicker than the dynamic boundary layer, while for wa
the situation is opposite. Such an observation allow
Lighthill [17] to apply a velocity distribution with constan
shear for determining heat transfer in the boundary la
The solution obtained for the case of constant shear, e
to the shear acting at the solid/liquid boundary, was fo
to be fairly accurate even when applied to other mater
with thermal and dynamic boundary layers of the sa
order of magnitude. This finding supports the adequac
applying Couette flow for coupled flow and solidificatio
processes. A strong relationship between the nature o
water flow on a cooling plate and the ice shape form
on this plate was revealed in the experiments carried
by Hirata et al. [18,19]. In the case of laminar wa
flow [18], the accreted ice shape may be represented
parabolic cylinder developing from the leading edge of
cooling plate. In this region, characterized by accelera
flow, the influence of free stream turbulence is maxim
leading to a discrepancy of about 15% between theore
and experimental data. For the region where the trans
from laminar to turbulent flow occurs, a decrease in
layer thickness is observed, caused by an increase in
heat transfer coefficient associated with the transition.
transition Reynolds number corresponding to this loca
was found to be lower than the one where ice does
accrete on the plate. Depending on whether the water
remains attached or becomes separated, smooth and
transitions were observed, respectively. In both case
gradual increase of the ice layer thickness was obse
in the subsequent flow in a turbulent heat transfer reg
An analogous effect was observed in channel flows [
A reduction of the transitional Reynolds number in t
case with an ice-covered substrate, as compared to the
without ice, was also observed in the experiments wh
the substrate had a cylindrical shape [21]. For a th
component system, including salt in the flowing water,
l

p

e

interaction of natural convection and melting processe
much more complex, depending on temperature and sal
factors [22]. A relation between turbulent water flow an
cusped ice/water interface was observed as well.

1.3. Microscopic consideration: Interaction of the melt
flow and dendrite growth processes

In contemporary theories for dendrite growth in t
presence of an external flow, the bulk supercooling
the supersaturation, expressed through a combinatio
the Stefan and Nusselt numbers of the dendrite,StD and
NuD , respectively, are usually related to the Péclet num
of the dendrite, calculated for the fluid flow and dend
growth velocities,PeF and PD , respectively [23]. The
problem of dendrite growth then leads to the determina
of temperature and concentration fields around the den
under external flow. Two problems arising should be clea
up here: various supercoolings used in the literature
tilted dendrite growth.

The entire supercooling of the melt may be considere
consisting of three main components [24]:

(i) the difference in temperature between the solid/liq
interface at any point and the melt far from th
interface,(bk −(1;

(ii) the difference in temperature of the solid/liquid inte
face between irreversible processes (i.e., with a cer
supercooling) and reversible processes (i.e., with
equilibrium temperature for a solid and its melt),(1;

(iii) the difference between the equilibrium temperatures
an appreciably curved and a planar interface sho
be considered; the curved interfaces we refer to m
include the tip of a dendrite or a nucleus, or a bump
the planar interface.

The first supercooling mentioned, which is a prevail
factor at low ice growth rates, controls the dissipation
latent heat, while the second, which becomes compar
to the first only at a high ice growth rate, is responsible
the kinetics of interface processes. The third supercoo
component, which generally remains of a lesser orde
magnitude than the first two, is a result of the interact
of heat diffusion and capillary processes. Heat diffus
tends to maximize the curvature of the interface and t
minimize the scale of the morphology, while capillary forc
tend to minimize curvature of the interface and there
maximize the scale of morphology. In the case of ste
state growth, all three supercoolings should be cons
Following Macklin and Ryan [25], the maximum ice grow
rate in quiescent water,Gm, coinciding with the dendrite
axis, can be written as a contribution of the growth rate al
thea-axis,Ga , i.e., in the basal plane, and along thec-axis,
Gc, i.e., in the prismatic plane, respectively:

Gm =Ga cosϕ +Gc sinϕ (I.1)
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whereφ is the inclination of the dendrites with respect to t
basal plane. It appears from a number of experiments
that growth in the basal plane is always faster than in
prismatic plane. It was found also, from natural observa
[27] and the experimental investigation [28] of ice froz
from flowing saline water that thec-axis aligns with the
direction of flow. Thus, in 2-D considerations of ice grow
the direction of the normal to the ice/water interface w
coincide the direction of thea-axis of the growing dendrite
The ice growth rate in this direction in quiescent water,Ga ,
was the subject of much investigation during the sixties [2
and may be expressed as a function either of bulk w
supercooling or supercooling at the ice/water interface
30]:

Ga = f ((bk) or Ga = f ((1) (I.2)

In the case of flowing water, the first relationship should
modified to include the velocity of the flowuF (u, v), as was
done in the experimental investigation [31]. The shape of
dependence obtained:

Ga = f ((bk, uF ) (I.3)

is very similar to that used in the contemporary theories m
tioned earlier [23], i.e.,NuD = f (StD,PeF ,PD), and it may
be used preferentially for low supercoolings. The consid
tions preventing the direct use of such a relationship w
expounded at the end of Section 1.1. They are relate
the introduction of two integrals taken over the water fi
thickness,(bk = 1

h

∫ h
0 (Tm − T )dy, and ū = 1

h

∫ h
0 udy, in

the differential equation, called the Stefan condition. Heru
is water film velocity distribution. A simplified solution ma
be obtained, however, if prescribed profiles for both v
ables are used, or if(2 is substituted for(bk. Another way
of overcoming the problem is to assume that the relat
shipGa = f ((1) is one of the curves of a family of simila
curves for different flow rates. Then, by calculating the te
perature and velocity fields in the film, it is always possi
to obtain a unique solutionGa = f ((1) for a prescribed dy
namic condition. This last approach is the one used in
investigation.

Another factor to be discussed here is tilted dend
growth, which was mentioned indirectly at the beginn
of this section. From this earlier discussion, one m
conclude that the axis of dendrites growing in the flow
melt is inclined to the ice/water interface at an an
of 90◦ − ϕ. Tzavras and Wallace [32] investigated t
symmetry of steel dendrites grown from flowing melt
a furnace under unidirectional growth. They found t
dendrites were “turned” into the flow, when the flow w
laminar. Under these circumstances, a partially equia
columnar structure was obtained. The symmetry of
growing dendrites, however, was destroyed at a flow sp
of about 20–25 cm·s−1, when the flow became turbulent.
turbulent conditions, the flow “bent” the dendrites in rand
directions, which resulted in random, rounded shapes
the flow velocity was increased to 50 cm·s−1, a combined
thermal and mechanical effect was observed, which resu
in the growth of a fibrous structure with a reduced grow
rate, even though the ratio of the temperature gradient to
growth rate was high enough to produce a cellular struct
Tzavras and Wallace inferred that under highly turbul
flow, travelling waves appeared in the diffusion bound
layer.

Several significant theories of dendrite growth in the pr
ence of external forces were revised and experimentally
ified [33] by measuring the concentration field around
growing dendrite. It was found that measured supersa
tions may be predicted fairly accurately with potential
uniform flow considerations. Tilted dendrite growth in a p
allel shear flow of the melt was numerically investigated
cently by phase-field simulation [34]. In spite of earlier e
perimental findings, which suggested that the shape of th
of the dendrite is not affected by applied melt flow, while t
stability parameter is considerably affected by it, this inv
tigation found that melt flow increases asymmetric grow
of side branches as the angle between the flow and den
growth direction increases. Three different growth regim
were found according to the corresponding contribution
heat transfer from the tip through different processes:

(i) quasi-steady growth controlled by an undisturbed te
perature field, where both the Péclet numbers, m
tioned earlier, are less than unity;

(ii) diffusion controlled growth, where

max(1,PeF ,PD)= PD
(iii) flow controlled growth where convection is the preva

ing mechanism for heat transfer, i.e.,

max(1,PeF ,PD)= PeF

Analogous diffusion-convection interaction and its fu
ther consequences on the morphology of dendrites were
perimentally investigated in earlier research using Cou
flow [35]. Both primary and secondary dendrite spacing w
found to be affected by the flow of the melt and thus by
interaction between convection and diffusion processes.

Recently, new experimental data have been obta
concerning crystal growth velocity under conditions
“pure” forced convection, [36,37]. These experiments w
conducted in such a way as to exclude the effect of ther
convection on the growth rate of crystals, an effect initia
observed for ice [38]. All of these experiments pres
evidence of the strong dependence of crystal growth on
flow of its melt. This is the primary reason for consideri
a microscopic rather than a macroscopic approach to
understanding of the phenomenon of icing in this paper.

In addition, a microscopic approach makes it possibl
examine the instability of the moving interface between
solid (ice) and the supercooled melt (water), under fluc
tions of the thermodynamic and dynamical parameters.
start with the supposition that the interrelated initial sta
ity and shape of the interface might be modified by pot
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tial changes in the coefficient of heat transfer in the wa
film. Natural icing processes always occur under conditi
of varying or fluctuating thermodynamic parameters. Hen
it is important to assess the possible impact of external fl
tuations, as well as any related internal instabilities, on
growth of the icing interface.

The conclusion to be drawn from this brief review
the literature is that the dynamics of a water film flowi
on an icing surface may be the key factor influenc
the morphology and growth of the ice deposit. In t
paper we will attempt to confirm and elaborate upon
particular finding. An attempt will thus be made to inclu
a microscopic heat balance analysis related to the kin
of crystal growth, and to elucidate its connection to
macroscopic heat balance, taking into account the dyna
of melt flow.

2. Formulation of the problem and principal
assumptions

For simplicity, we will consider a one-dimensional mod
of icing on a flat plate, We believe, however, that the esse
conclusions obtained from such a model will be applica
to more complex geometrical structures. The icing objec
be considered is located within a supercooled air–aer
flow; it is supposed then that a thin water film has form
on the icing surface; and that the layer lying immediat
adjacent to the surface of the structure has already tu
into ice (Fig. 1). The water film is assumed to flow und
the influence of a constant shear stress,F , applied to its
surface by the air stream. The supply of water derives f
two processes: the inflow of water from upstream alo
the plate, and the collection of supercooled water drop
on the surface of the water film. The loss of water is a
due to two processes: the discharge of water downstr
along the plate, and its conversion into ice. The inflow a
outflow of the water are of the same order of magnitu
they are, however, much greater than the droplet collec
and solidification fluxes, which are smaller, but of the sa
order of magnitude as each other.

Fig. 1. Schematic of a thin, supercooled water film flowing on the sur
of accreted ice in the “wet” regime.
l

We will consider one of four possible combinations of t
laminar and turbulent regimes, for parallel air–aerosol
water film flow. Specifically, we will consider laminar flo
in each medium. The exact formulation of the regime in
air–aerosol, which determines the surface temperature o
water film and its conditioning by the free steam turbulen
will be the theme for future research. Here, we cons
quasi-steady external thermodynamic conditions, with ei
constant heat flux or constant temperature conditions a
water surface. Bearing in mind that natural conditions ne
remain constant, we will consider how short-term chan
or fluctuations of one or several thermodynamic parame
result in changes in the thickness of the water film, a
influence the rate of ice growth in supercooled flowing wa

For steady, fully-developed, homogeneous flow of a t
water film (i.e., independent of thex-coordinate), with no
pressure gradient, the following governing equations
x-momentum and heat transfer hold, in both laminar
turbulent regimes:

∂

∂y

{
(νw + εM)∂u

∂y

}
= 0 (1)

∂

∂y

{
(χw + εH )∂T

∂y

}
= ∂

∂y

{(
νw

Pr
+ εM

Prt

)
∂T

∂y

}

= u∂T
∂x

+ v ∂T
∂y

(2)

The properties of water are designated as follows:νw and
χw are the kinematic viscosity and thermal diffusivi
respectively (m2·s−1); εM and εH are eddy diffusivities
for momentum and heat transfer, respectively (m2·s−1); Pr
and Prt are the molecular and turbulent Prandtl numb
respectively. Furthermore,u(y) is the tangential componen
of velocity (m·s−1), and T (x, y) is the temperature in
the supercooled water film (K). In laminar flow, the ed
diffusivities are omitted. All terms containing the norm
component of velocity in the boundary layer have be
omitted, since it is negligible in comparison with th
tangential component. The right-hand terms in Eq. (2)
retained in order to consider the possibility of convection
from the lower boundary, and to take into account the
thatv, though small, is finite, while the order of magnitu
of ∂T /∂y is unknown.

The following momentum boundary conditions are i
posed at the air/water and ice/water interface, respective

∂u

∂y

∣∣∣∣
y=y2

= F

ρwνw
(3)

u|y=y1 = 0 (4)

whereF is the interfacial shear stress at the free surf
of the liquid film (N·m−2), and ρw is the water density
(kg·m−3). Let us consider a constant interfacial shear str
for the ideal case of a fully smooth free surface with
surface waves, consistent with the absence of a pres
gradient in the liquid film. While not accounting for surfa
waves is a possible drawback of the model, it is offse



A.R. Karev et al. / International Journal of Thermal Sciences 42 (2003) 481–498 487

ng a
stre
and
e
d

th

ed
ed,

the
ter

e
f

t

ice
it.

del,
ot

r, ice
ption
We
the
hea
he
cing
th

of a
e is
ace.
ice
ter

an
0],

ng
and
ent
ater

the
s:

the
th

in
air–
face

ts;

ace
the
:

e
–
f
f the

is
the

he

ater

s–
ling

. It
and

wth

r-
ribe
mag-
r

some degree by the considerable advantage of havi
steady-state model. Nevertheless, the enhanced shear
produced by the waves, should be taken into account,
will be later. It is clear also that gravity may becom
significant if the following two conditions are satisfie
simultaneously:

(i) the water film thickness is of order of magnitudeO
(mm); and

(ii) the direction of the film flow forms a certain angle wi
the horizontal plane.

It should be noted that the influence of gravity is exclud
automatically, here, by the way the problem is formulat
but that this in no way implies that gravity is negligible.

For the heat transfer equation, in a laminar regime,
following boundary conditions are imposed at the ice/wa
interface:

−λw ∂T
∂y

∣∣∣∣
y=y1

= ρiLi dy1

dτ
(5)

where ρi is the density of the growing ice layer at th
interfacey1 (kg·m−3); dy1/dτ is the rate of displacement o
this interface (m·s−1); τ is time (s);Li is the specific laten
heat of freezing of water (J·kg−1) and λw is the thermal
conductivity of water (W·m−1·K−1).

As stated previously, we assume that the accreted
layer is thick enough to disregard conduction through
Ice sponginess is also disregarded in this simplified mo
but it can easily be shown that its introduction would n
change the main conclusions of this research. Moreove
sponginess is additional evidence to support the assum
of an absence of heat conduction in the ice layer [39].
also ignore any longitudinal temperature gradient along
ice surface. Under these conditions, all released latent
is directed through the water film to the air stream. T
growing crystals behave as “roughness elements” produ
early turbulence in the water flow [28], since their grow
velocity, in general, exceeds the rate of displacement
planar interface. Clearly, even in this case, turbulenc
absent in the laminar sub-layer near the ice/water interf
It may readily be shown, however, that the tips of the
crystals can reach far into the buffer layer of the wa
film, where the velocity distribution for the entire film
has the shape of the universal law of the wall. Such
approach was taken by Blackmore and Lozowski [4
for example, in connexion with their model for predicti
ice accretion sponginess. In the case of laminar heat
momentum transfer, it is considered that roughness elem
have no effect on drag increase. In other words, the ice/w
interface is considered to be hydraulically smooth.

A second boundary condition for heat transfer at
air/water interface is imposed, for the following two case

(a) constant temperature

T |y=y2 = T2 (6a)
ss

t

s

(b) constant heat flux

λw
∂T

∂y

∣∣∣∣
y=y2

=
n∑
i=1

Qi = const=Qout,s (6b)

whereQi denotes external heat fluxes at the surface of
water film, whileQout,s is the net surface heat flux. Bo
conditions (6a) and (6b) must ultimately be specified
terms of the external thermodynamic parameters of the
aerosol flow. The typical heat balance at the free sur
includes three principal terms:

(i) convective heat transfer to the airstream;
(ii) sensible heat of the impinging supercooled drople

and,
(iii) evaporative heat transfer.

The mass transfer equation at the air/water interf
explains the displacement of this interface, normal to
water film flow, due to the flux of incoming water droplets

dy2

dτ
= w ·E · Va

ρw
−Ce (7)

where dy2/dτ is the growth velocity of the water film surfac
(m·s−1); w is the liquid water content (LWC) of the air
aerosol flow (kg·m−3); E is the mean transfer efficiency o
the dispersed phase from the aerosol onto the surface o
water film. WhenF is parallel to the water surface, it
the mean entrainment efficiency. In all other cases, it is
mean collection efficiency;Va is air speed (m·s−1); andCe
(m·s−1) is a correction for the rate of displacement of t
air/water surface arising from evaporation [41].

As stated previously, a supercooling,(1, relative to the
fusion temperature, is considered to occur at the ice/w
interface:

T |y=y1 = T1 = Tm −(1 (8)

This supercooling is typically a fraction of 1◦C, and, in
general, it is only partly accounted for by the Gibb
Thompson effect. Rather, we see it as the supercoo
at the ice/water interface, as investigated in [29,30]
represents the interface-attachment kinetics involved
constitutes the motive power for ice/water interface gro
on a microscopic scale:

dy1

dτ
= a ·(b1 = a · (Tm − T1)

b (9)

wherea (m·s−1·K−b) andb are empirical constants dete
mined experimentally. Essentially, Eqs. (7) and (9) desc
the mass balance, since, as stated above, the order of
nitude of dy1/dτ and dy2/dτ is the same, unlike the orde
magnitude of the inflow and discharge of water.
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3. Ranges of the laminar and turbulent flow regimes

The solution of Eq. (1) for the laminar regime, wi
boundary conditions (3) and (4), is a Couette linear profi

u= F · y
ρwνw

(10)

Integrating this profile over the film thickness, one obta
the mean water film velocity:

ū= 1

h

h∫
0

udy = F · h
2ρwνw

(11)

Using ū, one may determine the Reynolds number of
water film as a function of its thickness,ReF , or the
corresponding Reynolds number for flow rate,ReFL:

ReF = 1

νw

h∫
0

udy = ū · h
νw

= ReFL

4
= Γ

µw
(12)

where Γ is the mass flow rate per unit of film widt
(kg·m−1·s−1). Each of the two Reynolds numbers is distin
from the other as indicated by the factor 4.

In order to understand the results to be presented ne
would be useful to consider the classification of the liq
film flow regimes. Fulford [42] recognizesReF = 270 as
the transition Reynolds number from laminar to turbul
flow in the liquid film. Kutateladze [43] distinguishes fo
flow regimes: astable laminar regime, whose upper limit
is defined in terms of the Archimedes number,Ar, as
ReF < 2.3× Ar0.2; a laminar-wavyregime, extending from
this limit to ReF = 100; a laminar-turbulent transition
regime for 100< ReF < 400; and adeveloped turbulen
regimefor ReF >∼ 400. Fig. 2 depicts a 3-D representati
of the Reynolds number for a water film, calculated
using (12), as a function of the water film thickness a
the interfacial shear stress applied at its surface. For
purpose of specifying air and liquid viscosities, the
temperature is taken to be−10◦C, while the water film
surface temperature is taken to be−3 ◦C, the latter being
chosen as the mean of measured water film supercoo
on an icing surface [9]. One may conclude from Fig.
that, for the ranges of interfacial shear stress and water
thickness considered here, the water film may exhibit
four regimes, passing from perfectly laminar, in the low
left corner, to developed turbulent, in the top right corn
In actuality, the transition to turbulent flow is likely to occ
even sooner than Fig. 2 suggests, owing to the fact tha
calculatedReF in the turbulent regime is underestimated
a consequence of using a laminar Couette velocity profi
all the regimes.

A few words must now be said about interfacial sh
stress on the water film surface. Shear stress con
of two components, one generated by the airflow
the other by impinging aerosol droplets. Calculations
icing on a cylindrical body [41] have shown that, over
Fig. 2. Reynolds number of a two-dimensional water film,ReF , as a
function of the shear stress applied at its surface,F , and its thickness,h.
The computations were made using a Couette laminar profile throug
even in the laminar–turbulent transition regime, 100<ReF < 400, and the
turbulent regime,ReF > 400. The temperature of the surface,T2, is taken
to be −3 ◦C. The range of air shear stress shown, computed accor
to the Cheremisinoff and Davis formula [44], covers an air speed ra
from 1.36 m·s−1 to 32.3 m·s−1, for h = 500 µm and an air temperatu
Ta = −10◦C.

reasonable range of LWC in air under natural conditi
(w < 4 × 10−3 kg·m−3), the second component is alwa
about one order of magnitude lower than the first.
these calculations, however, the surface of the water
was assumed to be smooth, which is not typically
case under natural conditions. The dominant disturba
wave type, known asroll waves, tends to appear on th
surface for conditions where the Reynolds number for
water film, ReF , is of the order of magnitude of sever
tens. Significant local surface perturbations may also
generated by the impact of the impinging droplets. Si
even minor surface perturbation, whatever the cause,
a considerable influence on air shear stress and also inc
the interfacial friction factor, the best way to relate interfac
shear stress to airspeed is experimentally. Fig. 3 pres
the relationship between the air speed and the resu
interfacial shear stress in a two-fluid-layer flow as a funct
of water film thicknesses. Calculations were perform
using the experimental formula proposed by Cheremisi
and Davis [44], as follows:

F = fi 1
2
ρa(Va − c)2 (13)

where

fi = 0.008+ 2× 10−5ReF for 100� ReF � 1700 (14)

andfi is the interfacial friction factor;ρa is the air density
(kg·m−3); andc is the phase speed of surface waves (m·s−1).
As in the calculation made by Cheremisinoff and Davis
was reasonably assumed here thatVa � c for the interval
covered by theReF in (14), used in the calculations. A
may be seen from Fig. 3, the range of shear stress va
presented in Fig. 2 corresponds to the range of natura
speeds during atmospheric icing. The relationship betw
air speed and shear stress is noticeably different, if
skin friction coefficientcf is used instead of the interfaci
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Fig. 3. Surface shear stress as a function of free stream airspeed, ov
range considered in Fig. 2. The computations were made according to
and (14) for water film thicknesses of: (1)h= 10−4 m; (2)h= 5×10−4 m;
(3) h = 10−3 m; (4) h = 5 × 10−3 m. Each curve is computed over a
identical range of water film Reynolds number,ReF . For comparison, cor
responding relationships are presented for a flat plate [45]: (5) Schl
ing–Prandtl, plate lengthl = 1 m, laminar-turbulent airflow, transition a
F ∼ 0.05 N·m−2 with Rea,crit = 5× 105; (6) Schlichting,l = 0.1 m, pure
laminar airflow; (7) influence of roughness elementsl/ks = 500; (8) air
flow over water in a wind-wave tank [47].

friction factor fi . The skin friction coefficient we refer t
is that for airflow along the surface of a smooth, solid
plate [45], and it takes no account of the features of the w
surface. Curves 5 and 6 in Fig. 3 present this relation
for two flow regimes: (5) for transitional-turbulent flow ov
a plate with a length ofl = 1 m; (6) for laminar flow
over a plate with a length ofl = 0.1 m. In the first case
transition occurs atF ≈ 0.05 N·m−2, ucrit = 6.2 m·s−1, and
Rel,crit = 5× 105, where the Reynolds number for the pla
is calculated according to:

Rel = Va · l
νa

(15)

whereνa is the kinematic viscosity of air.
The average skin friction coefficient for transitional flo

shown in curve 5, may be calculated according to
formulae. Up to the transition point, we use the Schlicht
formula for laminar flow:

cf,l = 1.328√
Rel

(16)

Beyond the transition point, we use the Prandtl–Schlich
formula:

cf,t = 0.074Re−0.2
l ·

(
1− Rel,crit

Rel

)
+ Rel,crit

Rel
· cf,l (17)

As may be seen in curve 6, for the shorter plate, w
transition does not occur over the entire range of sh
e

stresses investigated (ucrit = 62 m·s−1), and where (16)
is used for calculation, the curve lies considerably low
Comparing curves 5 and 6 with the experimental cur
1 to 4, one may conclude that it is impossible to expl
relationships (13) and (14), even by considering the airfl
to be turbulent. We can improve the agreement substant
however, if we use the average skin friction coefficient fo
rough, flat plate [45]:

c̄f =
(

1.89+ 1.62 log
l

ks

)−2.5

(18)

where ks is the height of the roughness elements (
Curve 7 in Fig. 3, presents the results forl/ks = 500. It lies
precisely within the experimental curves. Ifl = 0.1 m, this
suggests that the maximum amplitude of interfacial wa
taken to be half the roughness height, would be 10−4 m. This
value seems quite reasonable for natural conditions [
Curve 8 in Fig. 3, presents a possible limit in the relations
between free-stream air velocity and the shear stress cr
by it at the air-water interface, since it concerns experime
results for airflow over a relatively deep, i.e., 0.5 m, wa
layer inside a wind-wave tank [47]. The relationship w
calculated from an empirical relationship between fr
stream air velocityVa , in the range from 2.4 to 11 m·s−1,
and the friction velocity at the air/water interfaceuw−a :

uw−a = 0.02V 3/2
a (19)

where Eq. (19) accounts for the presence of turbulenc
both air and water.

4. Results and discussion

4.1. Equation for temperature distribution

To continue our investigation of the laminar regime,
need to obtain the temperature distribution through the fi
i.e., to solve (2) for the laminar case, using the veloc
profile calculated in (10). In order to do this, we will invok
the customary similarity transformation [45] or [48], wi
the introduction of a new dimensionless coordinate:

η= 1

2

(
usy

2/νwx
)1/2 = y

2νwx1/2

(
F · h
ρw

)1/2

(20)

where, in place of the free flow velocity at infinity, w
have introduced the surface velocityus (m·s−1); andh is
the water film thickness (m). In order to use the similar
transformation, we account for the fact that the norm
component of velocity,v, does exist, even though it
small. Hence, it will be considered in the equations
both momentum and heat transfer. In view of this, we h
introduce a stream function for both components of veloc

u= ∂ψ and v = −∂ψ (21)

∂y ∂x
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Transforming the stream function, we introduce the n
variable:

f = ψ

(νw · us · x)1/2 =ψ ·
(

ρw

x · F · h
)1/2

(22)

Following these transformations, the heat transfer equa
(2) may be written:

d2T

dη2 + f · Pr
dT

dη
= 0 (23)

The boundary conditions (6a) and (6b), at the air/wa
interface, transform as follows:
at

η= h
2

(
us

νwx

)1/2

= h3/2

2νwx1/2

(
F

ρw

)1/2

we impose either
(a) constant temperature

T = T2 (24a)

or
(b) constant heat flux

∂T

∂η
= 2X1/2 · Pr

cw(Fhρw)1/2

n∑
i=1

Qi ≈ const forΛ�Λlin (24b)

whereX = (x1 + x2)/2 is an average value of thex-co-
ordinate over the considered interval. The similarity varia
Λ and its critical value will be discussed later.

The corresponding transformed boundary condition
the ice/water interface, (8) and (5), may be written:
(a) constant temperature:

η= 0, T = T1 (25a)

(b) constant heat flux:

η= 0,
∂T

∂η
= 2X1/2 · Pr · ρi ·Li

cw(Fhρw)1/2
· dy1

dτ
(25b)

It should be noted that, since the variableη is a function
of both the original variablesx andy, the transformation o
conditions (6b) and (5) into (24b) and (25b), respectiv
requires some explanation. The original equation (2), in
laminar form, along with Eq. (5a), implies that the he
generated by viscous dissipation can be transferred by
conduction and convection. As will be seen later, depend
on the boundary conditions applied at the upper and lo
surfaces of the liquid film, one may obtain cases with vari
contributions of conduction and convection over differ
longitudinal length scales. For example, in the unnat
situation of bi-isothermal interfaces, i.e., ice/water and a
aerosol/water, convection is important only near the or
along thex-axis, while it is entirely insignificant at greate
distances. This is, in part, why we use an average va
X, instead ofx. X is also used because the constant h
flux boundary condition in the initial coordinates become
variable heat flux condition in the transformed coordina
Over a suitable range,x1 to x2 centered onX, however, the
heat flux may be considered to be essentially constant.

The functionf satisfying boundary condition (4) may b
expressed as an infinite series inη [48]:

f = αη
2

2! − α
2η5

5! + 11α3η8

8! − 375α4η11

11! + · · · (26)

where the defined constantα = 1.3282. Bearing in mind tha
the solution for the velocity distribution is a Couette line
profile (which is, in fact, a degenerate boundary layer),
return to this approximation by retaining only the first te
in (26):

d2T

dη2 + α
2

Pr η2dT

dη
= 0 (27)

The resulting equation (27) can be readily solved ana
cally by substitutingdT

dη = Φ and then separating variable
It should be noted that the same result can be obtaine
the stream function is determined with both velocity co
ponents satisfying a Couette profile,viz. u = (usy/h) and
v = (νwy2/h3), whereus plays the role of the free strea
velocity, andh the role of the degenerate boundary la
thickness. This result was obtained by Levich [48] in solv
the convective–diffusion equation.

Eq. (27), together with boundary conditions (24) a
(25), make it possible to investigate the relationship betw
the temperature profile, which arises from the heat tran
from the growing ice/water interface, on the one hand,
the water film thickness and the flow field, on the other. T
latter two items are related in a simple fashion through (1
The choice of boundary conditions depends on the sca
the conceptual model of the solidification process wit
moving boundary, and the approach used to represen
heat transfer from it. In other words, we need to addr
the question of what the relationship is, at various len
scales, between the two driving influences typically use
describe the displacement of the ice/water interface. In
macroscopic consideration, such as the Stefan solidifica
problem, the driving influence is the temperature grad
near the solid/melt interface; while, in the microscopic c
of ice dendrite growth, it is the supercooling relative to
equilibrium temperature for a solid and its melt. As sta
earlier in Section 1.3, this supercooling may, in general
decomposed into the ice/water interface supercooling
the difference between the interface temperature and
temperature of bulk melt [29], and [30]. The contributi
of the components is completely different at various gro
rates, which, as was aptly stated in [49], may be a func
of both of them. We will first consider the simple instan
where the temperatures are constant at both the ice/w
and the air–aerosol/water interfaces, thus, drawing a par
with a thermal boundary layer.

4.2. Bi-isothermal paradigm

A preliminary approximation of the temperature fie
may be obtained by representing the freezing proc
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or displacement of the ice/water interface, as a const
temperature heat source moving into the water film
a constant velocity as calculated in Eq. (9); here, b
interfacial temperatures aty1 andy2 are kept constant. Thi
bi-isothermal model is analogous to Couette flow betw
two plates at temperaturesT1 and T2. The temperature
distribution, at any distance from the origin of the flow, m
be found by integrating (27) twice, and then applying (2
and (25a) to find the constants of integration. The result

T = T1 − (T1 − T2)

y

2νwx1/2 ·( F ·h
ρw
)1/2∫

0

exp

{
−α

6
Prη3

}
dη

×
[ h3/2

2νwx1/2 ·( Fρw )1/2∫
0

exp

{
−α

6
Prη3

}
dη

]−1

(28)

By introducing the new variables

Θ = T1 − T
T1 − T2

and ζ = η ·
(
α

6
Pr

)1/3

(29)

one may reduce (28) to the form:

Θ =
ζ1∫

0

e−ζ3
dζ

[ ζ2∫
0

e−ζ3
dζ

]−1

(30)

where

ζ1 = y(
α
6Pr)1/3

2νwx1/2 ·
(
F · h
ρw

)1/2

and

ζ2 = h
3/2(α6Pr)1/3

2νwx1/2 ·
(
F

ρw

)1/2

The two integrals in (30) may be solved numerica
using data from Abramowitz and Stegun [50]. It is cle
from (30), that the values ofΘ are confined to the rang
0 �Θ � 1, since:

T = T1 �⇒ Θ = 0 and T = T2 �⇒ Θ = 1 (31)

The temperature distribution between two isothermal in
faces is shown in Fig. 4, for several values of the simila
parameter

Λ= νw
(
ρwx

F · h
)1/2

ForΛ= 6.3× 10−5 m andΛ= 8.9× 10−5 m (curves 1 and
2, respectively) the main temperature drop is concentr
near the ice/water interface. The heat transfer at th
locations near the origin occurs mostly by convection,
the influence of conduction is negligible. ForΛ = 2.0 ×
10−4 m (corresponding toh = 5 × 10−4 m, F = 1 N·m−2,
andx/h = 10), the temperature gradient near the ice/wa
interface is almost linear, but the gradient near the
surface remains low. ForΛ = 2.8 × 10−4 m (curve 4) the
contribution of convection and conduction are both of
Fig. 4. Distribution of dimensionless temperatureΘ = (T1 − T )/(T1 − T2)

through the water film of thickness,h, as a function of the sim
ilarity parameterΛ = νw(ρwx/F · h)1/2: (1) Λ = 6.3 × 10−5 m;
(2) Λ = 8.9 × 10−5 m; (3) Λ = 2.0 × 10−4 m; (4) Λ = 2.8 × 10−4 m;
(5) Λ = 6.3 × 10−4 m; (6) Λ = 8.9 × 10−4 m. For F = 1 N·m−2 and
h = 5 × 10−4 m, the curves correspond to the following distances fr
the origin of the flow: (1)x = h; (2) x = 2 h; (3)x = 10 h; (4)x = 20 h;
(5) x = 100 h and (6)x = 200 h.

same order of magnitude, while forΛ = 6.29 × 10−4 m
(curve 5) the contribution of convection has already beco
negligible. Reaching a critical value,Λ=Λlin = 8.9× 10−4

m, a linear, conductive temperature profile prevails. Bey
this point:

Λ�Λlin,
∂

∂x

(
∂T

∂y

)
→ 0 (32)

The greater the shear stress applied at the upper inter
and the thicker the water film, the longer the distan
is, over which the temperature profile is nonlinear. T
linearization process requires some explanation. Accor
to boundary layer fundamentals, the molecular Pra
number for water,Pr, is related to the laminar therm
boundary layer thickness,δT , and the dynamic boundar
layer thickness,δD , in the following way:

Pr = νw

χw

∼=
(
δD

δT

)2

(33)

For laminar flow, the dynamic boundary layer thickness
water is always greater than the thermal boundary la
since the kinematic viscosity exceeds the thermal diffusiv
In turbulent flow, however, this asymmetry in the trans
of momentum and heat is appreciably modified, since
eddy diffusivities for momentum transfer,εM , and for heat
transfer,εH , tend to be equalized:

Prt = εM
εH

= u′v′

T ′v′
· ∂T /∂y
∂u/∂y

→m (34)

where u′v′ is turbulent “shear stress”, a time averag
product of u′ and v′; T ′v′ is turbulent heat flux, a time
averaged product ofT ′ and v′; while m is some constan
close to, but never equal to unity, according to rec
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experimental measurements [51]. For water, this cons
is m ∼= 0.85. The total momentum and heat transfers w
therefore be dependent on the level of turbulence, taking
account both viscous and turbulent terms. In fully-develo
turbulence, where viscous momentum and heat transfer
be disregarded, the thermal and dynamic boundary la
tend to be of a similar thickness. In the case of transitio
or developing turbulence, however, these layers will
be the same. The adoption of a Couette linear profile
for the velocity distribution over the water film mea
that the dynamic boundary layer thickness is equal to
water film thickness,δD ∼= h, and remains constant ov
all length scales. In contradistinction, the thickness of
thermal boundary layer is not constant, but develops f
a minimum defined by (33), to its maximum thickne
approximately equal to the water film thickness,δT ∼= h.
Then, once the boundary layer reaches the free surfac
the water film, the temperature distribution rapidly becom
linear.

An attempt will be made here to connect the macrosco
scale, on which the solution to (30) is found, with t
microscopic scale, on which ice dendrites occur, by apply
the results obtained by Kallungal and Barduhn [38]. Th
reported that the principal radius of curvature of the tip of
ice dendrite,RC ∼= O(0.1−1 µm), is inversely proportiona
to the bulk supercooling:

RC = C/(bk (35)

where the constant isC = 0.6 × 10−6 m·K, while (bk is
the supercooling of the bulk water into which the dend
grows (K). The ice dendrites observed were anisotropic, w
a shape, which approximates an elliptical paraboloid hav
an aspect ratioA:

A=
(
R2

RC

)1/2

= 10 (36)

whereR2 is the secondary radius of the dendrite tip (m
The pronounced anisotropy of ice dendrites suggests th
order to apply macroscopic results, some intermediate s
should be chosen of an order of magnitude of the secon
radius of the dendrite tip, O(R2).2 Now that the scale for th
temperature field has been chosen, it is possible, taking
account (29), (35) and (36), to formulate such a field in
following dimensionless form:

dΘ

dy+ = ρiLiR2

λw · ((2 −(1)
· dy1

dτ

= ρiLiA
2C

λw · ((2 −(1)(bk
· dy1

dτ
(37)

In (37), the dimensionless temperature gradient is dire
proportional to the macroscopic rate of displacement of
ice/water interface. Here,y+ = y/R2 is the chosen inter
mediate scale, while(2 = Tm − T2 is the supercooling

2 An investigation on the smallest scale O(RC) will be the theme of a
future paper.
f
Fig. 5. Dimensionless temperature gradient, dΘ/dy+ , in the flowing water
film near the ice/water interface, as a function of dimensionless dist
from the origin of the flow. The air shear stress is constantF = 1
N·m−2. The numbered curves correspond to water film thicknesses
(1) h = 300 µm; (2)h = 400 µm; (2)h = 500 µm; (4)h = 600 µm;
(5) h= 1× 10−3 m; (6)h= 5× 10−3 m.

at the free surface (K). The bulk water supercooling m
tioned earlier is, generally, not a constant, but rather(bk =
f ((2,(1).

Fig. 5 presents the dimensionless temperature gra
for R2 ≈ const= 50 µm, corresponding to(bk = 1.2 ◦C,
as a function of the dimensionless distance from the fl
origin, for several values of water film thickness. A sing
family of curves emerges, as shown in Fig. 5, when exte
conditions, defined by the equations for mass transfer
and heat transfer (24a) at the free surface, are constant
case whereF = 1 N·m−2 (curves 1–6) is considered her
Each family of curves may be divided into three distin
regimes. The first is the main stem, which is conditioned
similarity of the solution (30); here, the solutions for all fil
thicknesses are superimposed. The second regime beg
the location where the thermal boundary layer reaches
free surface, and it is understandable that this location
function of film thickness, i.e., accepted dynamic bound
layer thickness. The third regime begins at the loca
where the temperature gradient in the film can be represe
as essentially linear.

Fig. 5 also makes it possible to understand the interac
between the growth rate of the ice/water interface
the thickness of the supercooled water film. The type
interaction which occurs is unique to each regime.
the solutions lying along the main stem, a decrease
the water film thickness corresponds to descent down
main stem, i.e., to the right and downward. This implie
corresponding decrease in the ice growth rate. Conver
an increase in film thickness corresponds to ascent a
the main stem, and hence the ice growth rate increa
In other words, the ice/water interface responds in a st
fashion to sudden changes in the water film thickness. If
change in water film thickness or the distance from the fl
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origin is sufficiently large, it is possible to reach the seco
part of the similarity solution. Here, the ice growth rate
unaffected by sudden changes in the water film thickn
In Fig. 5, this corresponds to displacement to the left o
the right with a constant dimensionless temperature grad
dΘ/dy+. Finally, at the location specified by (32), the thi
and most important regime is reached. Here, the reac
of the ice/water interface to changes in the water fi
thickness is unstable. A decrease in the water film thickn
corresponding to displacement to the right and upward a
the branches of the similarity stem, is accompanied
an increase in the ice growth rate. Increased ice gro
will, in turn, further diminish the water film thicknes
until it disappears completely. On the other hand, a sud
increase in the water film thickness is accompanied b
decrease in the ice growth rate. In Fig. 5, this correspo
to displacement to the left and downward along the lin
branches. Since condition (32) can readily be achieved,
reasonable to consider a linear temperature profile for
most frequent, naturally occurring cases.

4.3. Linear temperature distribution with close-to-consta
surface temperature

Kachurin [52] was the first to conclude that the lamin
regime of a shear-driven, supercooled water film, flow
over an accreting-ice surface, is unstable at a sufficie
large distance from the flow origin. Our further examinat
of this instability will be based on his considerations. For t
purpose, a hypothetical equilibrium state is now propos
where water film thickness and ice growth rate are cons
and the temperatures of the ice/water interface and the w
film surface areT1 andT2, respectively (Fig. 6). Here, th
linear temperature gradient through the film, which gove
the ice growth rate, may be written simply:

∂T

∂y

∣∣∣∣
y=y1

= T2 − T1

y2 − y1
(38)

Inserting (38) into (5) and taking into account (7) and (
one obtains:

ρiLi
dy1

dτ
+ λw

T2 − Tm + a−1/b(
dy1
dτ )

1/b

(Va ·wE/ρw −Ce) · τ − y1
= 0 (39)

Assuming all external thermodynamic parameters to
constant, (39) is differentiated to obtain the acceleratio
the ice/water interface, d2y1/dτ2, taking (7) into account:

d2y1

dτ2 = − dy1/dτ(dy2/dτ − dy1/dτ)

(y2 − y1)[1+ a−1/b

b(y2−y1)
· λw
ρiLi
(

dy1
dτ )

(1−b)/b]
(40)

The equilibrium water film thickness may be found
equating the acceleration to zero. This occurs when dy1/dτ
equals dy2/dτ :

heq = (y2 − y1)eq

= λw

ρi ·Li · (Va ·wE −Ce)
ρw
t

r

Fig. 6. Schematic of the linear temperature profile, for three different w
film thicknesses near a given equilibrium state. An increase in thick
reduces the temperature gradient neary1, and, as a consequence, the grow
rate at the ice/water interface diminishes. Hence, the water film thick
continues to increase. Conversely, a decrease in thickness enhanc
growth rate at the ice/water interface, since it steepens the tempe
gradient. In this event, the water film disappears rapidly. Conseque
an equilibrium state with a linear temperature gradient over the entire
thickness is unstable.

×
[
Tm − T2 − a−1/b ·

(
Va ·wE
ρw

−Ce
)1/b]

(41)

Let us now imagine that the water film thickness changes
to some sudden disturbance at the ice/water interface.
temperature gradient through the film thickness also cha
(Fig. 6), as does the temperature at the ice/water inter
Let us assume, however, that all the external thermodyna
parameters remain constant. We wish to find out h
the ice/water interface reacts to the modified water fi
thickness, after the initial disturbance has been remo
The temperature changes occurring at the ice/water inte
are negligible in comparison with the temperature differe
between the ice/water and water/aerosol interfaces. He
by substitution of (41) into (39), one obtains:

dy1/dτ

(dy1/dτ)eq
= dy1/dτ

dy2/dτ
= heq

h
(42)

From a comparison of (40) and (42), one may conclude t
if the instantaneous water film thickness is less than
equilibrium water film thickness, the rate of displacem
of the ice/water interface exceeds the corresponding equ
rium velocity, and it will continue to increase until the wat
film has completely disappeared (Fig. 7). Similar unsta
behavior of the ice/water interface may be observed if
water film thickness exceeds the equilibrium thickness
culated by (41). In such a case, the rate of displaceme
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Fig. 7. Displacement of the ice/water interface, in the laminar reg
of water film flow, as a function of time under various condition
(1) equlibrium displacement of the ice/water interface, (heq = 317 µm,

w = 1.2 g·m−3; V = 15 m·s−1); (2) displacement of the free surfac
(3) displacement of the ice/water interface with an initial water fi
thicknessh0 = 250 µm; (4) displacement of the ice/water interface w
an initial water film thicknessh0 = 350 µm.

the ice/water interface will be less than the correspond
equilibrium velocity, and it will continue to decrease un
the water film flow becomes turbulent.

4.4. Natural temperature distribution through a water film
Randomly oscillating surface temperature

In the previous two sections it was shown that the lam
supercooled water film flowing on the accreting ice surf
is unstable under conditions of constant water-film surf
temperature. The following will be an attempt to prove t
this conclusion applies to natural laminar water films as w
Experimental data on heat transfer to liquid films flowing
a heated surface will be used to demonstrate this corol
The most frequent data recorded in this area concern the
transfer to freely-falling liquid films. These data, therefo
should be considered as a basis for further examinatio
the stability of the water film and for subsequent applicat
to shear driven water films. In order to present the lo
heat transfer coefficient in its dimensionless form, it wo
be useful to introduce several definitions from this ar
The linear characteristic of the interaction between gra
and viscosity is the water film thickness,hgν , defined as
follows [43]:

hgν =
(

ν2
wρw

g(ρw − ρa)
)1/3 ∼=

(
ν2
w

g

)1/3

(43)

whereg is acceleration due to gravity. Both dimension
and dimensionless heat transfer coefficients for a fre
t

falling liquid film, H (W·m−2·K−1) andH+, respectively,
are defined as follows:

H = Qwl

(T2 − T1)

H+ = H

λw
hgν = Nu

h/hgν
= Nu

h∗ = Nu∗
(44)

whereQwl (W·m−2) is the heat transfer flux from th
wall, Nu is the Nusselt number for a water film havin
a thicknessh; while Nu∗ is the Nusselt number for
water film having a relative thicknessh∗ = h/hgν . Actually,
for the definition of heat transfer coefficient, the surfa
temperature of the film,T2, is used here, since it invoke
experimental data presented by this definition. An analog
heat transfer coefficient based on the temperature of
water,Tbk, may be defined whenT2 is altered toTbk. In the
experimental investigation [53], the common experime
data from this area of heat transfer were presented
follows:

H+ = 1.76Re−1/3
FL for ReFL � 2460Pr−0.646 (45)

H+ = 3.23× 10−2Re1/5FL Pr0.344

for 2460Pr−0.646� ReFL < 1600 (46)

H+ = 1.02× 10−3Re2/3FL Pr0.344

for 1600� ReFL < 3200 (47)

H+ = 8.71× 10−3Re2/5FL Pr0.344

for 3200� ReFL (48)

These correlations, however, do not distinguish betwee
laminar and turbulent regimes of water film flow. Only (4
is applicable to the laminar regime where all of the h
transferred from the heating surface is removed from
film surface. In the case where all of the heat is absor
completely by the film, this relation transforms into:

H+ = 2.27Re−1/3
FL (45a)

which is valid for approximately the same range of Reyno
numbers as in the original formula. With reference to
classification of the flow regimes of a liquid film as presen
in Section 3, it is also possible to present the heat tran
across the flowing film for the four regimes mentioned in t
section. Since the original empirical relations investiga
and compiled by Kutateladze [43] are expressed by u
the Reynolds number constructed for the film thickness,
may be expressed in a form similar to the one used in
through (48), bearing in mind the relationship between
two Reynolds numbers, i.e., Eq. (12). In thestable laminar
regime (or the asymptotical extension of the Nusselt fi
concept), the ratio between integral heat transfer and
conductivity in the vicinity of the solid/liquid interface, i.e
the Nusselt number, is constant:

Nu= 1.875, or H+ = 2.064Re−1/3
FL

for ReFL � 9.2Ar0.2∗ ∼= 31.5 (49)
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The water film thickness in this regime may be defined fro

h∗ = 0.908Re1/3FL (50)

It may be concluded from the last two expressions
the dimensional coefficient of heat transfer between
solid/liquid interface and the liquid, in this regime,
inversely proportional to the water film thicknessH ∼ h−1.

In a wavy-laminar regime, the relationship betwee
the dimensionless heat transfer coefficient and both
Reynolds numbers for the film and flow may be written
follows:

H+ = Nu∗ = 1.1Re−0.28
F = 1.62Re−0.28

FL

for 31.5<ReFL � 400 (51)

The corresponding expression for water film thickness m
be written as follows:

h∗ = 0.817Re1/3FL (52)

From (51) and (52), one may observe that the inve
proportionality between dimensional heat transfer efficie
and water film thickness weakens in this regime:

H ∼ Nu/h∼ Re−0.28
F ∼ h−0.56

In the laminar-turbulent transition regime, the heat transfe
coefficient and water film thickness may be defined from
following expressions:

H+ = 2.727× 10−5Re1.18
FL Pr0.4

for 400<ReFL � 1600 (53)

h∗ = 0.131Re0.6FL (54)

It may be concluded here, that the relationship betw
dimensional heat transfer and water film thickness
changed radically from inverse to direct proportionali
H ∼ Re1.18

F ∼ hn, wheren∼= 1.97, since the velocity profile
is no longer linear.

In the fourth,developed turbulentregime, the relationshi
between heat transfer and the Reynolds number for flow,
water film thickness, weakens to:

H+ = 0.0754Re1/6FL Pr0.4 for ReFL > 1600−2000 (55)

h∗ = 0.138Re7/12
FL (56)

In its dimensional form, the relationship between the h
transfer coefficient and the water film thickness also we
ens toH ∼ h0.286.

Fig. 8 presents both series of data mentioned,
that described in (45)–(48) and [53], and that descri
in (49), (51), (53) and (55) [43], revealing that there
a satisfactory amount of coincidence between them.
boundaries of the regimes in the second series are al
slightly in order to avoid any discontinuity in the valu
of the heat transfer coefficient. In particular, the transit
from thewavy-laminarto the laminar-turbulent transition
regime, in spite of the boundary suggested by (53), occ
in Fig. 8 at a Reynolds number ofReFL,crit = 883. As
Fig. 8. Dimensionless heat transfer coefficient for various flow regi
according to several authors: (1) formulas (45)–(48) [53]; (2) formulas (
(51), (53) and (55) [43].

will be seen in the accompanying paper [54], this value
fairly close to the analogous value for transition, obtain
from slightly different theoretical considerations. From
examination of Fig. 8, it may be concluded that the h
transfer coefficient is always proportional to some pow
of the water film thicknessH ∼ hn. For laminar regimes
it is an inverse proportionality, while for turbulent regime
it is a direct proportionality. In order to present the results
experiments in the area of heat transfer to freely-falling fi
in dimensionless form, a multiplication factor is usedhgν . In
Appendix A, it is shown that this universal multiplicatio
factor may be employed for shear-driven films as well.

Using definition (29) for substitution in (44), while takin
into account the scaling in they-direction proposed by (35
and (36), for the first laminar regime defined by (49), o
may obtain:

dΘ

dy+ = 2.064

(
ρwν

2
wA

2C

2F(bk

)1/3
h+−2/3

hgν

= CΘ((bk)h
+−2/3

(57)

This equation is an analogue of (37). It may be seen, tha
temperature gradient is, indeed, inversely proportional to
water film thickness. When water film thickness decrea
the gradient increases andvice versa. The dependence
however, is slightly different from that proposed in Sect
4.3 by taking a linear approximation with a nearly-const
surface temperature. Defining the equilibrium state of
water film, which is obtained by equating (7) to (9), a
performing the same procedure, as in the section mentio
one obtains the following equation as an analogue of (42

dy1/dτ

(dy1/dτ)eq
= dy1/dτ

dy2/dτ
= (2 −(1

h2/3

h
2/3
eq

((2 −(1)eq
(58)

Another equivalent of this law for the first laminar regim
may be defined as follows:(
(2 −(1

h2/3

)
= const (59)
eq
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This relationship changes just slightly for the second la
nar regime. As may be supposed from the relationships
sented, the heat transfer in turbulent regimes displays
trary behaviour to that described in this section.

5. Factors causing disturbances in crystallization

Several factors, which can produce sudden disturba
in the crystallization process, will be discussed here. A
disturbance near the crystallization front can be initia
by local thermal heterogeneity produced by either
crystallization front itself or by external influences at the f
surface of the water film or by the joint influence both
these factors.

Free convection and the mechanical discontinuity of
solid phase may be counted among factors in the first gr
which is conditioned by the processes of diffusion and
sorption of dissolved gases, minerals, ions and macrosc
solid particles at the ice–water boundary. This results in
formation of a layer of heightened concentration near
moving phase boundary. Several thermo-electrical or e
trochemical effects as well as diffusion and other proce
may be considered consequences of the existence o
layer. Each of them is a potential source of disturbance
the crystallization front. Another source of local disturban
at the ice/water interface is the process of the depositio
admixtures rejected during ice layer formation. This is a
sult of pre-existing hollowness in the crystallographic str
ture of ice [55], and the isolation of gases and salt crys
in the water. The capture of entire foreign particles by
ice may be considered as a special source of local tem
ature disturbance at the crystallization front. This is ca
non-equilibrium capture, and is conditioned by macroscop
defects in the ice structure.

The factors influencing the surface of the flowing wa
film may be called external factors due to their indir
influence on the stability of the ice/water interface. H
we need to distinguish thermodynamic from mechan
factors, as they are related to the bombardment of the
surface by supercooled water droplets, and their subseq
spreading. Capillary wave formation may be the m
important mechanism in this group, giving rise to loc
disturbances in the temperature gradient near the
surface as a result of wave propagation and differen
evaporation. The genesis of microbursts upstream of
crests [56], as well as roughness of the ice/water inter
[28], may be factors promoting the early onset of turbule
in the film.

6. Conclusions

The thermodynamic and morphological stability of t
crystallization front (i.e., the interface between solid a
liquid) under a wind-driven, flowing melt film has bee
s

-

t

considered as it relates to disturbances of the exte
thermodynamic parameters, using the ice–water sys
as an example. The reaction of the ice crystallizat
front to disturbances of the thermodynamic parameters
especially examined here in connection with laminar fl
and heat transfer through the liquid film. In the lamin
regime, where the heat transfer from the crystallizat
front is conditioned only by the adjoining temperatu
gradient, the reaction of the interface to disturbances
the thermodynamic parameters is always unstable, resu
in corresponding changes in film thickness—either a ra
disappearance of the film, or a rapid thickening of the fi
until it reaches a stable turbulent regime. As will be see
the accompanying paper [54], the reaction of the ice/w
interface to sudden disturbances in the water film thickn
becomes entirely different in turbulent flow.
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Appendix A. Analogy between shear-driven and
gravity-driven films

In the accompanying paper [54], the relation betw
freely-falling and shear-driven films is investigated. T
following connection between two different motive powe
for flow is found:

ρwg = 12

23/2

F 3/2

µ
1/2
w ν

1/2
w Re1/2FL

= 3F

h
(A.1)

where the final simplified relationship in (A.1) between t
two different motive powers was obtained for a linear lam
nar Couette profile. By substitution of (A.1) in (43), one m
define, in analogy withhgν , the following linear characteris
tic for interaction between shear stress and viscosity,hSH,ν ,
having the dimension of length:

hSH,ν = νw
(
ρ3
wReFL

18F 3

)1/6

=
(
ν2
wρwh

3F

)1/3

(A.2)

where the second expression in (A.2) is obtained for lam
flow. Correspondingly, the relationship between the t
characteristics, eliminating viscosity, may be defined, us
the dimensionless number,NSH,g as:

NSH,g =
(
ν2
wρ

3
wReFLg

2

3

)1/6

=
(
ρwhg

)1/3

(A.3)

18F 3F
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Again, the last expression in (A.3) is obtained for the lami
case. This relationship may be used as a multiplication
tor, for transformation from the dimensionless heat tran
coefficient for gravity-driven films,H+, presented in Fig. 8
to the analogous heat transfer coefficient for shear-dr
films,H+

SH:

H+
SH =H+NSH,g (A.4)

Performing this transformation, for example, for (44), o
may obtain:

H+
SH = 2.064

(
ν2
wρ

2
wg

6F 2h

)1/3

(A.5)

The characteristic length (A.2) for this heat transfer co
ficient, however, is not constant, as in the case of a gra
driven film, since it is dependent on the water film thickne
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